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Abstract 24 

Compound drought and heatwave (CDHW) events can be influenced by large scale 25 

teleconnections and anthropogenic warming, leading to severe socio-economic impacts across 26 

various climate regions. In this study, the relative influence of six different teleconnection 27 

patterns and anthropogenic global warming on the global CDHW occurrences is quantified 28 

systematically using the instrumental data period, 1982-2016. The results from the study suggest 29 

a substantial increase in the CDHW events (1–5 events per year) across various parts of the globe 30 

at the beginning of 21st century (2000–2016). A Bayesian approach is implemented to identify 31 

the most vulnerable climate regions based on the degree of susceptibility of heatwaves (DSHW) 32 

towards drought. As such, top ten most vulnerable regions are selected based on the DSHW 33 

magnitude, and a partial correlation analysis is performed to select the natural and anthropogenic 34 

drivers of CDHW in those regions, separately. A logistic regression model is then used to 35 

determine significant changes in the odds of CDHW due to changes in the selected drivers that 36 

suggest a significantly positive, and multiplicative effect of anthropogenic global warming in the 37 

top ten most vulnerable climate regions. Finally, the same logistic regression model, integrated 38 

with an analytical framework, is applied to determine the relative influence of anthropogenic 39 

global warming on the changes in odds of CDHW for the future, 1.5℃ and 2℃ warming limits. 40 

The results suggest that relative to the 2°C global warming, constraining to the 1.5°C global 41 

warming limit may conduce about 17-fold reduction in the odds of CDHW in the most 42 

vulnerable climate region, East Asia, 5 to 8-fold reduction in Western North America, Northern 43 

Australia, Central North America, Central Europe, South Asia, and the Mediterranean region, 44 

and 3 to 4-fold reduction in Northeastern Brazil, Eastern North America, and West Asia.  45 

 46 
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1. Introduction 51 

Compound drought and heatwave (CDHW) events have had multiple societal and eco-52 

hydrological impacts including loss of crop yield (Ciais et al., 2005; Zampieri et al., 2017), 53 

increased wildfires and tree mortality (Allen et al., 2010), and health hazards (Poumadère et al., 54 

2005). CDHW events are typically triggered by anticyclonic flow patterns (Trenberth and 55 

Fasullo, 2012), followed by land-atmosphere feedback processes that modulate the surface 56 

energy budget (Mukherjee et al., 2020; Mukherjee and Mishra, 2020). Natural modes of climate 57 

variability are instrumental in influencing global circulation patters that lead to conditions 58 

favoring the development of anticyclonic regimes over terrestrial regions (Mukherjee et al., 59 

2020; Pepler et al., 2019). Observations indicate a poleward expansion of these regimes in both 60 

hemispheres during the past few decades, which is attributed to intensification and poleward shift 61 

in main storm tracks in mid-latitudes, associated with warming (Lu et al., 2007; Pepler et al., 62 

2019; Trenberth et al., 2014; Yin, 2005).  63 

The anticyclonic anomalies in the atmosphere are accompanied with clear skies or lack of 64 

moisture in the lower atmosphere making conditions less conducive for precipitation and thereby 65 

facilitating drought conditions. The lack of surface moisture leads to excessive sensible heating 66 

at the expense of decreased latent energy or evapotranspiration, causing surface warming. The 67 

prolonged period of high surface temperatures eventually lead to heatwaves (HW) (Horton et al., 68 



2016; Stéfanon et al., 2014), resulting in the occurrence of CDHW events. Additionally, the rise 69 

in surface air temperature further exacerbates drought conditions by initiating a land-atmosphere 70 

feedback loop with the soil moisture by increasing the atmospheric demand (leading to increased 71 

evapotranspiration). This feedback process is very common in the anticyclonic weather regimes 72 

and is generally referred as the soil-temperature coupling (Betts et al., 1996; Seneviratne et al., 73 

2010; Whan et al., 2015). Anthropogenic climate change has already accelerated such processes 74 

leading to increased frequency of CDHW events across many parts of the globe (Mazdiyasni and 75 

AghaKouchak, 2015; Mukherjee and Mishra, 2020; Sun et al., 2017, 2018; Zhang et al., 2018). 76 

Given the role of temperature anomalies in the occurrence of CHDW events, drought 77 

quantification using only precipitation may lead to underestimation of drying (Dai and Zhao, 78 

2017), which can lead to uncertainties in the characterization of CDHW events (Mukherjee et al., 79 

2020; Mukherjee and Mishra, 2020). Therefore, it is imperative that soil moisture, and surface 80 

temperature anomalies are incorporated in the estimation of CDHW using the energy budget 81 

framework. To this end, Palmer Drought Severity Index (PDSI; Wells et al., 2004) is a 82 

comprehensive drought index that incorporates hydroclimatic variables relevant to the estimation 83 

of drought under the changing climate (Mukherjee et al., 2018). Furthermore, as previously 84 

noted, the large scale natural modes of climate variability are instrumental in the formation of 85 

anticyclonic regimes and that anthropogenic footprint is detectable in the intensification of 86 

conditions that are conducive for the occurrence of extreme dry and hot conditions (Hassan and 87 

Nayak, 2020; Lau and Kim, 2012; Pepler et al., 2019). Therefore, there is a need to establish 88 

analytical frameworks that not only identify relevant modes of climate variability, that exert 89 

influence on distribution of CHDW events across the globe, but also incorporate the relative 90 



influence of anthropogenic warming (ANT) on the evolution of CDHW events (Hao et al., 2018, 91 

2019; Y. Zhang et al., 2019). 92 

In this study, we present a comprehensive global analysis on the relative effect of 93 

anthropogenic warming and natural climate variability on CDHW events, for the first time. First, 94 

we focus on the identification of natural and anthropogenic climate forcings that play a 95 

significant role in the occurrence of CDHW events during the 1982–2016 historical period. 96 

Subsequently, we estimate the possible increase of such events at 1.5°C and 2°C future warming 97 

scenarios and discuss its implication for mitigation strategies. The rest of the manuscript is 98 

structured as follows: Section 2 focuses on the data and methodology applied in the study; the 99 

results and relevant discussions are provided in Section 3; and finally, the summary of major 100 

findings and concluding remarks are provided in Section 4. 101 

2. Data and Methodology 102 

2.1. Data 103 

We selected 26 climate regions across the globe, proposed under the IPCC-AR5, as the 104 

study area (as shown in Figure S1). Gridded daily global maximum and minimum 2 meter air 105 

temperature (Tmax and Tmin) at 0.5° spatial resolution was obtained from the Climate 106 

Prediction Center (CPC) (from CPC Global Temperature data provided by the 107 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at 108 

https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html ). Gridded daily global precipitation 109 

(Pr) at 1° spatial resolution was obtained from the Global Precipitation Climatology Center 110 

(GPCC; Schamm et al., 2015). Available water content (AWC) was obtained from the global 111 



texture derived AWC dataset by Webb et al. (2000). All datasets were regridded to the same 2.5° 112 

spatial grids for the calculation of global weekly CDHW events from 1982–2016. 113 

To evaluate the relative influence of anthropogenic warming and natural climate 114 

variability of the CDHW events, we calculated global mean temeprature changes, and selected 115 

six different natural modes of climate varability for analysis (Table S1). For the calculation of 116 

global mean temeprature changes, global gridded monthly temperature anomaly data provided by 117 

HadCRUT4 (Morice et al., 2012) was obtained from 118 

https://crudata.uea.ac.uk/cru/data/temperature/. We further re-calculated the anomalies over the 119 

globe using the pre-industrial era (1861–1890) as the baseline period, and then obtained the 120 

global mean temperature change (referred hereafter as “ANT” in this study). The six natural 121 

modes of varability include Southern Oscillation Index (SOI), Dipole Mode Index (DMI/IOD), 122 

Southern Annular Mode (SAM), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and 123 

Pacific Decadal Oscillation (PDO). The SOI is available from the Bureau of Meteorology 124 

(http://www.bom.gov.au/climate/current/soihtm1.shtml ), and IOD was obtained from the 125 

NOAA Climate Prediction Centre (NOAA CPC; http://www.cpc.ncep.noaa.gov/ ). The monthly 126 

values of SAM, AO, NAO, and PDO were also retrieved form NOAA CPC. 127 

To assess the impacts of warming, we first used a 21-year window (2008–2028) centered 128 

on year 2018 to calculate the current day warming (hereafter referred to as the current world). 129 

The warming level in the current world is estimated based on the globally averaged monthly 130 

temperature outputs from 35 Coupled Model Intercomparison Project Phase-5 (CMIP5; 131 

https://esgf-node.llnl.gov/search/cmip5/) Global Climate Models (GCMs; Table S2) under the 132 

Representative Concentration Pathways 8.5 (RCP8.5) emission scenario. We chose the RCP8.5 133 



scenario, as it matches the observed emissions more closley (Sanford et al., 2014) compared to 134 

the other RCPs (RCP2.6, RCP4.5, and RCP6). 135 

2.2. Estimation of Compound Drought and Heatwave (CDHW) Events 136 

CDHW events are estimated following the procedure proposed in Mukherjee et al. 137 

(2020). Drought estimation at weekly time scale can help to retain the memory of soil 138 

temperature and moisture inherited within a short time-scale (Mukherjee et al., 2020). This 139 

approach not only captures the diurnal feedback loop but also produces a considerable sample 140 

size required in the statistical analysis of rare events such as the co-occurrence of HW and 141 

drought. In this study, we define a CDHW event as a HW event that occurred during the drought 142 

weeks over a given location and temporal period. 143 

A threshold-based approach was used to identify CDHW events during 1982–2016. At 144 

each grid point, the 10th percentile of weekly self-calibrated PDSI (wPDSI_sc) for the reference 145 

period, 1982–2011 were obtained as a threshold, and any wPDSI_sc value below that threshold 146 

was estimated as a drought week for the period, 1982–2016 (Mukherjee et al., 2020; Mukherjee 147 

and Mishra, 2020). CDHW events were then identified when daily Tmax value exceeded the 90th 148 

percentile (TX90pct) (Fischer and Knutti, 2015; Meehl and Tebaldi, 2004; Perkins et al., 2012; 149 

Unkašević and Tošić, 2013) for 3 or more consecutive days during these drought weeks. The 150 

TX90pct was caluclated for each calender day as the 90th percentile of daily Tmax over each 31-151 

day window during the 30 years (1982–2011) climatological period (Fischer and Schär, 2010). 152 

2.3. Measurement of Degree of Susceptibility of HW (DSHW) Towards Drought 153 

To get a measure to which it is more likely that HW and drought will co-occur in a particular 154 

location, we estimated the degree of susceptibility of HW towards drought (DSHW) in the 155 



historical period. The DSHW was estimated based on the conditional formulation of CDHW 156 

events followed by a statistical test for significance. First, probability (pe, and pc) of occurrence 157 

of two mutually exclusive extreme events, HW events with and without an already existing 158 

drought (that influences the background state of the climate) were estimated based on the 159 

observational record across the globe. Statistically significant (at 5% significance level) pe/pc 160 

ratio greater than 1 was obtained using the two-proportion z-test (or Chi-square test). The z-161 

statistic is based on a standard normal distribution. Therefore, to remove the normality 162 

assumption, the results were obtained for the two mutually exclusive events (i.e., HW events 163 

with and without an already existing drought) by resampling, producing 1000 realizations each 164 

with replacement. The resampling is performed based on the following steps:  165 

a. First the number of days drought occurrences (= d), no drought occurrences (= nd), with 166 

HW occurrences (= h), and non-occurrences (= nh), are recorded for a given grid point.  167 

b. The pe and pc values from the above information is used to calculate the z-statistics from 168 

the observed sample.  169 

c. A matrix consisting of binary elements (1 and 0), is generated based on the number of 170 

HW occurrences (h) indicated by the number of “1”s and non-occurrences (nh) indicated 171 

by the number of “0”s.  172 

d. For a given realization (out of total 1000 selected here), total d samples are chosen with 173 

replacement from the binary matrix and stored as M1. Subsequently, pe is calculated as 174 

the sum of all 1s and zeroes from the matrix, M1, divided by the number of drought days 175 

(d).  176 



e. Similarly, total nd samples were chosen with replacement from the binary matrix and 177 

stored as M2. Subsequently, pc is calculated as the sum of all 1s and zeroes from the 178 

matrix, M2, divided by the number of non-drought days (nd).  179 

f. The z-statistics from the sampling distribution is calculated based on the pe and pc values 180 

from the sampling distribution. 181 

g. Finally, 1000 samples of the z-statistics for the sampling distribution are generated by 182 

repeating the steps in (c, d, e, and f) 1000 times.  183 

Finally, the proportion of the z-statistic from the sampling distribution which had absolute values 184 

as large or larger than that observed z-statistic is calculated. We rejected the null hypothesis of 185 

equal proportions if that proportion was greater than 0.05. The pe/pc ratio showing a 186 

significantly greater than 1 value was thus obtained at each grid point and defined as the DSHW 187 

in this study. The detailed formulation of z-statistics and the DSHW is provided in Appendix A 188 

of the supplemental information. 189 

2.4. Estimation of Partial Correlaton 190 

Partial correlation is the measure of association between two variables, while controlling 191 

or adjusting the effect of one or more additional or confounding variables. The effect of the 192 

confounding variables is adjusted based on their weights calculated as their regression 193 

coefficients. Partial correlation technique has been employed to derive interferential impact of 194 

multiple large scale teleconnection patterns (e.g., ENSO, PDO, NAO, and IOD) on temperature 195 

extremes and drought across many regions of the globe (Ashok and Saji, 2007; Hu and Huang, 196 

2009; Manatsa et al., 2008; Mukherjee et al., 2020c; Rajagopalan et al., 2000; W. Zhang et al., 197 

2019). In this study, a non-parametric spearman’s rank correlation analysis was performed to 198 

identify possible drivers (Large-scale oscillation patterns and ANT) that influence the CDHW 199 



events. Hence, sstatistically significant (at 5% significance level) Spearman’s partial correlation 200 

between the region-wise area weighted number of MT-CDHW days and the interannual 201 

variability of the large-scale climate indices and ANT for the period, 1982–2016 were estimated 202 

for the selected climate regions, such that, 203 

2 2(1 )(1 )

xy xz yz

xyz

xz yz

r r r
r

r r

−
=

− −
                                                                                                             (1) 204 

where rxyz is the relative correlation between x (area weighted number of MT-CDHW days), and 205 

y (largescale climate indices, or ANT) with the effect of z, either of the other indices (or ANT) 206 

are removed. In order to account for the inter-dependence of different climate modes (Meyers et 207 

al., 2007; Perkins et al., 2015) and ANT, we employ partial correlation technique (equation 8) to 208 

isolate the influence of individual forcing.  209 

2.5. Measurement of Odds of Occurrence of CDHW Events 210 

Previous studies have confirmed the link between the odds of occurrence of extreme 211 

events and other climate variables using logistic regression (Mahlstein et al., 2012; Zhai et al., 212 

2005). In this study, we investigated the relative effect of large-scale teleconnection patterns and 213 

anthropogenic warming based on odds ratios calculated using the Firth logistic regression model. 214 

The odds of occurrence of CDHW events in any month is calculated using the interannual 215 

variability of large-scale climate indices and changes in the global mean temperature during the 216 

period, 1982–2016 as predictors. A detailed discussion on the application of the logistic 217 

regression model is discussed in the following section. 218 

Logistic Regression Model: 219 



We applied a multiple-predictor based Firth logistic regression model that is a special 220 

form of generalized linear model (Lindsey, 2000) to estimate the penalized regression 221 

coefficients corresponding to natural and anthropogenic variability of the climate. The Firth’s 222 

model applies penalized likelihood estimation rather than performing the conventional maximum 223 

likelihood estimation to obtain the penalized regression coefficients. The penalization allows for 224 

convergence of the likelihood to finite estimates in conditions of separation and also with sparse 225 

data and therefore, may alleviate overfitting (Albert and Anderson, 1984). 226 

In our analysis, we used the following logistic regression model: 227 

1 1 2 2
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1

n n ANT ANT
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where 
1

π
π

 
 − 

 is the odds of having more than two CDHW events per year; X1, X1, …., Xn are the 229 

large scale climate indices used in the model and XANT is the change in global mean temperature 230 

with respect to the pre-industrial period, 1861–1900; α , 1β , 2β , …., nβ , and ANTβ  are the 231 

corresponding penalized regression coefficients (or scaling factors). Once the model was fitted 232 

for the observational distribution the penalized regression coefficients were obtained that we 233 

refer as the scaling factors in this study. 234 

2.6. Estimating Odd Ratio for 1.5ºC, and 2ºC Global Warming 235 

One of our objectives is to answer the science question – “How much more likely will 236 

there be a CDHW day (in a month) at 1.5ºC and 2ºC global warming scenarios than there is at 237 

the current level of anthropogenic warming?”. This was achieved by changing the anthropogenic 238 

component to different warming levels (Current, 1.5ºC, and 2ºC), while keeping the natural 239 



component constant in the regression model. We estimated the current level of warming based 240 

on the average of monthly temperature anomalies (estimated with respect to the pre-industrial 241 

period, 1861–1890) for the current world. Finally, the odd ratio (OR) of monthly occurrence 242 

CDHW day for the future warming limits (1.5 °C, and 2 °C) to that for the current warming level 243 

was estimated as, 244 
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 (3) 247 

where T is the selected warming limit of 1.5ºC, and 2ºC, and XCurrent refers to the current 248 

warming level with respect to the pre-industrial period. 249 

3. Results 250 

3.1 Annual Increase in the Number of CDHW Events 251 

The number of CDHW events has increased annually during the 21st century (Post-2000) 252 

compared to that observed during the last two decades of the 20th century (Pre-2000) (Figure 1a). 253 

Figures S2a, S2b and 1(a) show the spatial distribution of the average number of events during 254 

the Pre-2000 and Post-2000 periods, and the corresponding difference in the same between the 255 

two periods, respectively. Figure 1(b) show the nonparametric probability density for the average 256 

number of CDHW events during the Pre-, and Post-2000 periods of the globe. We also 257 

performed the Kolmogorov-Smirnov and Wilcoxon rank sum tests to show that there is a 258 

statistically significant (at 5% significance level) difference between the distributions and 259 



medians of the CDHW events, respectively, between these two periods. Our analysis suggests an 260 

overall annual range of 1–5 events during the Post-2000 period (Figure S2b) with major portions 261 

included in most of the climate regions showing an increase of 1-3 number of events per year 262 

(Figure 1a). Those regions include the Southern parts of WNA and CAN, Eastern NAU, eastern 263 

and southeastern SAF, northeastern SAS, eastern ENA, northern MED, central NEU, and almost 264 

all over WAS, CEU and NEB. In addition to that, regions such as the southern EAS, eastern 265 

ALA, western CGI, and central AMZ show an increase of as high as 5 annual events during the 266 

Post-2000 period. However, CGI and ALA are excluded form rest of the analyses due to poor 267 

quality of available data over these regions. 268 

 269 

 270 



Figure 1 (a) Difference between the average number of CDHW events during the Pre-2000 271 

period (1983-1999) and Post-2000 period (2000–2016), (b) kernel density plot of the average 272 

number of CDHW events during the two periods of the globe, (c) spatial distribution of the ratio 273 

of the probabilities where the probability of heat wave day conditioned on drought (pe) is 274 

significantly (at 5% significance level) greater than the probability of heat wave day conditioned 275 

on drought (pe), and (d) percentage area of each climate region showing significantly (at 95% 276 

confidence level) greater probability of heat wave day conditioned on drought (pe) than that 277 

conditioned on no drought (pc). 278 

 279 

3.2. Degree of Susceptibility of HW (DSHW) Towards Drought 280 

We focus on finding the locations where it is significantly more likely to have HW and 281 

drought co-occurred on a particular day based on observations (Figure S3). We find that majority 282 

of grid points show higher DSHW towards a persistent drought week (pe/pc > 1; Figure 1c). 283 

However, the percentage of total area showing such DSHW varies across the different climate 284 

regions (Figure 1d). Climate regions, SEA, WAF, EAF, CAM, NAS, TIB, and CGI exhibit more 285 

than half of the area with statistically significant pe/pc ratio greater than 1, while SAH, WSA, 286 

SSA, and AMZ have less than half of the total area satisfying such conditions. More importantly, 287 

the rest of the 26 climate regions, CAN, CEU, EAS, WNA, WAS, NEB, ENA, NAU, SAS, 288 

MED, CAS, ALA, NEU, SAF, and SAU exhibit more than 2/3rd of the area that shows 289 

statistically significant degree of susceptibility of HW under an ongoing drought condition with 290 

majority of them showing pe/pc ratio as high as more than 5 (Figure 1c). Therefore, out of all 26 291 

climate regions considered in this study, we selected the top 10 climate regions that show a 292 

significant DSHW over more than 2/3rd of the total area (Figure 1d). Interestingly, these regions 293 



also show an increase in the number of CDHW events during the Post-2000 period, as shown in 294 

Figure 1a. Consequently, we performed the rest of the analyses based on these 10 climate 295 

regions. 296 

3.3. Possible Natural and Anthropogenic Drivers 297 

Previous studies suggest possible links between the large-scale global circulation patterns 298 

or oceanic variabilities and anticyclonic regimes in both the Northern and Southern Hemisphere 299 

(Abid et al., 2020; García-Serrano et al., 2017; Pepler et al., 2019; Singh et al., 2021; Song and 300 

Zhou, 2013; Wang and Zhang, 2002). Therefore, understanding and exploring such a relationship 301 

is key to identify the attributable factors behind the occurrence of compound events such as the 302 

CDHW for the climate regions that exhibit significant DSHW towards drought over more than 303 

2/3rd of the total area. More precisely, we explore possible links between the monthly total 304 

number of CDHW (MT-CDHW) days and the interannual variability in the natural climate (Song 305 

and Zhou, 2013) as well as the influence of rise in ANT on such extremes during the historical 306 

period. 307 

We selected six (Table S1) natural modes of climate variability that exert major influence 308 

on the variability of climate globally at seasonal to decadal time scale. To represent the 309 

interannual variability of these modes, monthly anomalies of their representative indices and 310 

global mean temperature were smoothed by applying a 12-month running mean filter. Since areal 311 

extent varies across different regions, area weighted MT-CDHW days were estimated for all 312 

selected climate regions. Figure 2a show only the statistically significant (at 5% significance 313 

level) Spearman’s partial correlation (see Methods) between the region-wise area weighted MT-314 

CDHW days and the interannual variability of the large-scale climate indices and ANT for the 315 

period, 1982–2016 for the selected climate regions. 316 



The results suggest that ANT exerts strong influence on the observed MT-CDHW days 317 

during the period 1982–2016 (Figure 2a), which is consistent with previous studies that have 318 

suggested a progressive global warming footprint in the occurrence of heatwaves (Deng et al., 319 

2018), droughts (Wang et al., 2016), and CDHW events (AghaKouchak et al., 2014) at the 320 

regional scale. 321 

 322 

323 
Figure 2 (a) Correlogram showing the significant (at 5% significance level) partial correlation 324 

between the number of monthly CDHW days and the interannual variability of large-scale 325 

climate indices during the 1982–2016 period based on non-parametric Spearman’s rho, and (b) 326 

Chord diagram showing the large-scale indices chosen based on the mechanistic explanation. 327 

 328 



In addition to that, several natural modes of climate variability also show a significant but 329 

relatively weak correlations with the occurrences of CDHW events during the analyses period. 330 

Southern Oscillation Index: 331 

Interannual variability of SOI show statistically significant positive correlation with the 332 

area weighted MT-CDHW days for the regions CNA (0.3), EAS (0.273), ENA (0.27), MED 333 

(0.13), WAS (0.29) and WNA (0.15), and negative correlation for the NAU (-0.2) (Figure 2a). It 334 

is well known that ENSO is one of the major natural modes of climate variability that exerts 335 

substantial influence in the global occurrences of simultaneous droughts (Singh et al., 2021). It 336 

tele-connects with remote regions through Rossby wave trains that either originate directly from 337 

central equatorial Pacific or propagate as a result of inter-basin interactions (Abid et al., 2020; 338 

Wang et al., 2017).  339 

Indian Ocean Dipole: 340 

IOD show significant positive correlation for the climate regions such as CEU (0.17), 341 

CNA (0.1), EAS (0.23), MED (0.24), SAS (0.14), and WAS (0.32) (Figure 2a). The role of IOD 342 

has been suggested in the formation of anticyclonic circulation over the Eastern Asia leading to 343 

unusual summer temperature in 1961 and 1994 (Saji and Yamagata, 2003). The IOD-induced 344 

divergent flow and diabetic heating anomalies excite the Rossby wave train propagation during 345 

summer towards the EAS climate region (Qiu et al., 2014). Impact of IOD is also linked to the 346 

circulation changes over the Europe and North America (Guan and Yamagata, 2003; Saji and 347 

Yamagata, 2003), and negative rainfall anomaly over the WAS climate region (Barlow et al., 348 

2002). A significant warming trend and a 10-20% reduction in rainfall is reported over the Indian 349 



subcontinent (included in the SAS climate region) over 1901–2012 due to rapid warming of the 350 

Indian Ocean (positive IOD phase) (Roxy et al., 2015). 351 

North Atlantic Oscillation (NAO): 352 

Strong influence of NAO over European heat wave and drought is evidenced through 353 

observational studies that suggest excitation of stationary wave train that facilitates anticyclonic 354 

weather regimes over the region (Cassou et al., 2005). Moreover, NAO can be associated with 355 

the North Atlantic Jet variability that has strong influence over temperature and precipitation 356 

variability over the US and Europe (Mahlstein et al., 2012; Trouet et al., 2018). This is also 357 

evident in our correlation analysis that show statistically significant Spearman’s correlation 358 

coefficient over MED (-0.16) (Figure 2a). Besides MED, three more climate regions (EAS (-359 

0.33), NEB (-0.16), and WAS (-0.28)) also show a significant correlation with the MT-CDHW 360 

days (Figure 2a). Except for NEB, where the Atlantic Multidecadal Oscillation (AMO) is the 361 

major driver (Knight et al., 2006), the NAO show marked influence on the precipitation and 362 

temperature variability over WAS (Filippi et al., 2014) and EAS (Bollasina and Messori, 2018). 363 

Note that due to the short span of the temporal period 1982–2016, we did not include AMO in 364 

our analysis. 365 

Pacific Decadal Oscillation (PDO): 366 

PDO show relatively strong negative correlation for three north American regions: CNA 367 

(-0.38), ENA (-0.31), and WNA (-0.11) (Figure 2a), which is consistent with the findings of 368 

previous studies that have documented significant influence of PDO on drought and heat wave 369 

events across the conterminous US (Dulière et al., 2013; McCabe et al., 2004; Peterson et al., 370 

2013). Moreover, we find negative correlation with the interannual variability of PDO (Figure 371 



2a) and the number of MT-CDHW days over the EAS (-0.33), and WAS (-0.33) (Figure 2a) 372 

climate regions, which is also supported by previous observational studies (Yu et al., 2018). 373 

However, significant correlations between variability in PDO and climate regions such as NAU 374 

(0.11), CEU (-0.11), and MED (-0.24) indicate a possible indirect influence on the CDHW 375 

events over these regions. Therefore, we exclude such influences in the further analysis of 376 

CDHW events over these regions. 377 

Arctic Oscillation (AO) and Southern Annular mode (SAM): 378 

SAM shows positive correlation for the climate regions in the northern hemisphere such 379 

as, CEU (0.11), EAS (0.2), ENA (0.12), MED (0.22), SAS (0.19), WAS (0.4), and WNA (0.1) 380 

(Figure 2a). On the other hand, significant correlation is found for climate regions, NAU (-0.14), 381 

and NEB (0.34) in the southern hemisphere (Figure 2a). It is evidenced that positive SAM has a 382 

strong influence on the frequency and poleward expansion of anticyclones in the southern 383 

hemisphere (Gillett et al., 2006; Marshall et al., 2014; Pepler et al., 2019) with intensification of 384 

Rossby wave in the eastern Australia. However, except for EAS (Wu et al., 2015), there is no 385 

such evidence of SAM index in the northern hemisphere therefore the impact of SAM is not 386 

considered in the further analysis of CDHW events over the northern hemisphere climate regions 387 

(CEU, ENA, MED, SAS, WAS, and WNA). On the other hand, AO that has significant influence 388 

over the increased frequency and expansion of anticyclones in the northern hemisphere (Pepler et 389 

al., 2019) also show significantly weak correlation for climate regions, CEU (0.14), CNA (0.17), 390 

NEB (0.19), and WAS (0.1). In our further analysis, we exclude the effect of AO over the 391 

climate regions such as WAS, and NEB. 392 



Finally, based on the correlative evidence provided in this section, a chord diagram is 393 

presented (Figure 2b) to show the selected large-scale climate indices along with the ANT that 394 

has a significant impact on the occurrence of CDHW events for the selected climate regions. 395 

3.4. Scaling Factors Associated with CDHWs 396 

The selected large-scale meteorological perturbations, and ANT (Figure 2b) were used as 397 

independent variables to fit the FLM (see Methods section) for the 10 climate regions. Our aim is 398 

to find the possible relationship between the odds of having at least one CDHW-day in a month 399 

and the combined effect of large-scale modes of climate variability and ANT based on the 400 

observational record. The odds of having at least one CDHW-day in a month indicate the 401 

minimum possible risk associated with the increasing anomalies in these global climate patterns 402 

and ANT. 403 

404 
Figure 3 Scaling factors (coefficient of regression) and their corresponding 5-95% CI indicating 405 

the sensitivity of odds of occurrence of monthly CDHW days against the inter annual variability 406 

of large-scale climate variables and ANT obtained from the FLM for the 10 climate regions. The 407 

red color indicates the scaling factors for the ANT, and the blue color indicate the same for the 408 



large-scale climate indices. The green circles with a blue cross indicate the scaling factors that 409 

are not statistically significant (at 5% significant level). 410 

Therefore, monthly binary outcomes (0 and 1) of occurrence, and non-occurrence of 411 

CDHW day were used as dependent variables into the FLM (see Methods). To account for the 412 

anthropogenic component into the FLM, changes in the monthly global mean temperature with 413 

respect to the pre-industrial period, 1861–1890 was also added as one of the independent 414 

variables. Note that all the independent monthly variables (natural and ANT) were first smoothed 415 

by applying a 12-month running mean and then regressed against the monthly time series of the 416 

binary variable. Finally, the scaling factors and their 5% and 95% confidence intervals (CI) 417 

obtained after fitting the FLM for each of the climate regions are shown in Figure 3. These 418 

scaling factors and their CI suggest the multiplicative increase (β > 1) or decrease (β < 1) in the 419 

monthly odds of a CDHW day for per unit increase in the large-scale climate indices, and ANT. 420 

In addition to that, we consider a signal from these large-scale natural modes of climate 421 

variability and ANT to have been detected when the CI do not cross zero and consider only the 422 

detected signals in our further discussion. 423 

The results (scaling factor, 5% to 95% CI) from the sensitivity analysis suggest that the 424 

rise in ANT has a statistically significant positive impact on the odds of occurrence of CDHW 425 

days for all selected climate regions, CEU (4.1, 2.9 to 5.2), CAN (3.8, 2.7 to 4.9), EAS (5.6, 4.1 426 

to 7.3), ENA (2.9, 2 to 3.9), MED (4.2, 3 to 5.6), NAU (3.7, 2.7 to 4.9), NEB (2.2, 1.3 to 2.3), 427 

SAS (4.2, 3 to 5.4), WAS (3.2, 2 to 4.4), and WNA (3.3, 2.2 to 4.5) (Figure3). These findings 428 

agree with previous studies that report a substantial increase in dry and hot spells in various 429 

regions across the globe due to rise in global warming (AghaKouchak et al., 2014; Mazdiyasni 430 

and AghaKouchak, 2015; Sun et al., 2017, 2018; Zhang et al., 2018). However, depending on the 431 



climate regions, the large-scale climate oscillations show either positive or negative signals 432 

against the odds of occurrence of CDHW day. For instance, positive phase of SOI shows a 433 

statistically significant positive relationship (scaling factor, 5% to 95% CI) for the climate 434 

regions, ENA (0.29, 0.05 to 0.53), MED (0.29, 0.07 to 0.53), WAS (0.51, 0.11 to 0.62), and 435 

WNA (0.36, 0.11 to 0.62), while a negative relationship for NAU (-0.25, -0.44 to -0.07). 436 

Similarly, significant effect of SAM can be seen for the climate regions, EAS (-0.6, -1.08 to -437 

0.14), NAU (-0.87, -1.26 to -0.5), and NEB (0.47, 0.14 to 0.82). Increase in positive AO show a 438 

significantly positive relationship with the odds of CDHW day for the climate regions, CEU 439 

(0.79, 0.29 to 1.3), CAN (0.72, 0.18 to 1.2), and increase in positive PDO showed a statistically 440 

significant negative relationship for the climate regions, CAN (-0.51, -0.88 to -0.14), and ENA (-441 

0.379, -0.69 to -0.07). On the other hand, NAO and IOD show significantly negative, and 442 

positive relationship with the odds of CDHW day for the climate regions, EAS (-0.92, -1.8 to -443 

0.05), and WAS (2.96, 1.53 to 4.45), respectively. However, for SAS no statistically significant 444 

signal is found from the natural variability of the climate. 445 

Thus, CDHW occurrences can be strongly attributable to the ANT, while natural 446 

variability has a very weak or no significant (in case of SAS) influence over the odds of CDHW 447 

events for the selected regions. Furthermore, the overall relationship of the natural modes of 448 

climate variability and ANT with the odds of occurrence of CDHW day (Figure 3) are found to 449 

be consistent with that obtained from the correlation analysis with the MT-CDHW events 450 

(Figure 2a) over the same climate regions.  451 

3.5. Effect of 1.5°C and 2°C Rise in Global Warming 452 

Form the sensitivity analysis, the monthly odds of occurrence of observed CDHW days 453 

can be attributed to the rise in ANT in almost all of the climate regions. Moreover, the magnitude 454 



of the scaling factors for all the climate regions indicates a substantial increase in the odds with 455 

per unit rise in the ANT forcing in the future climate. Given the continuous rise in global 456 

temperatures, it is likely that global warming may exceed the 1.5°C and 2°C warming levels by 457 

the 2030, and mid-21st century, respectively (IPCC 2021), which indicates a possibility of higher 458 

odds in the future compared to the present climate. To see the likely level of increase, we 459 

estimated the ORs for these climate regions as the ratio of monthly odds of occurrence of CDHW 460 

day in the 1.5°C, and 2°C warming levels to that in the current warming level. 461 

Figure 4 presents the two-dimensional CI plot showing the OR and the corresponding CI 462 

for the studied regions that show significant DSHW towards drought based on the observational 463 

record (Figure 1d). We find OR (5 to 95% CI) as high as 3.5 (2.5 to 5.2), 2.6 (1.98 to 3.5), 2.5 464 

(1.9 to 3.4), 2.5 (1.9 to 3.2), 2.4 (1.8 to 3), 2.3 (1.8 to 3), 2.1 (1.6 to 2.8), 2 (1.6 to 2.7), 1.9 (1.6 465 

to 2.4), and 1.7 (1.3 to 2) for the climate regions, EAS, MED, SAS, CEU, CAN, NAU, 466 

WNA,WAS, ENA, and NEB, respectively (Figure 4). These results suggest >1.7-fold increase in 467 

the odds of CDHW is likely in the 1.5°C warmer world compared to the present climate. Note 468 

that EAS exhibit even higher (3.5-fold) increase. 469 

On the other hand, at the 2 °C warming level, EAS, MED, SAS, CEU, CNA, NAU, 470 

WNA, WAS, ENA, and NEB, are likely to show ORs of 60.8 (20.4 to 209.18), 22.1 (9.1 to 58), 471 

20.9 (9 to 51.3), 19.5 (8.7 to 45.9), 16.1 (7.4 to 37.2), 15.7 (7.2 to 35.5), 11.36 (5 to 27.4), 10.26 472 

(4.5 to 24.7), 8.6 (4.4 to 17.5), and 5.2 (2.6 to 10.7), respectively (Figure 4). Therefore, climate 473 

regions such as, MED, and SAS show about 20-fold increase; CEU, CNA, and NAU show more 474 

than 15-fold increase; WNA, and WAS show more than 10-fold increase, and ENA, and NEB 475 

show 5 to 8-fold increase in the 2°C warmer world. Again, EAS shows exceptionally higher 476 

levels of odds of having CDHW day in a month with a 60-fold increase at 2°C warming. 477 



Therefore, limiting global warming to 1.5 °C level can substantially limit the risk of increase in 478 

the odds of CDHW day in a month, as it can mitigate more than 17-fold increase over EAS, 5 to 479 

8-fold increase over WNA, NAU, CAN, CEU, SAS, and MED, and 3 to 4-fold increase over 480 

NEB, ENA, WAS when compared to the odds at 2°C warming level. These results suggest 481 

pursuing active efforts to keep the warming levels well below the 2 °C limit (Rogelj et al., 2016). 482 

 483 

 484 

Figure 4 Ratio of odds (OR) for 1.5°C and 2°C warming limits with respect to the current level 485 

of warming. 486 

4. Summary and Conclusion 487 

Precipitation and temperature variability is affected by the large-scale climate 488 

perturbations that often lead to the formation of anticyclonic weather regimes. Under such 489 

circumstances, the net radiation received during the daytime becomes the primary component in 490 



the surface energy budget that heats up the land surface (Betts et al., 1996). The heating process 491 

has been accelerated and further intensified by the increased emission of heat trapping gases due 492 

to anthropogenic activities (Samset, 2018) and conditions favored by large scale teleconnections 493 

(Mukherjee et al., 2020), leading to increased probability of co-occurrence of HW, and drought 494 

events. This study provides a quantitative assessment of the relative effect of anthropogenic 495 

warming and large-scale teleconnection patterns on the occurrence of CDHW events during the 496 

instrumental period, 1982–2016. 497 

In this study, observational evidence has been provided that suggest a substantial increase 498 

in the number of CDHW events per year (1–5 events per year) across various parts of the globe 499 

in the beginning of 21st century (2000–2016). HW events were found to be susceptible to the 500 

existing drought conditions to different levels in the different global climate regions. For 501 

example, out of all the 26 climate regions, only fifteen showed a significant DSHW to the 502 

existing drought conditions over more than 2/3rd of their corresponding total area. Out of these 503 

15 regions, the top 10 climate regions, showing the greatest magnitudes of DSHW, are selected 504 

for the subsequent analyses. Monthly total number of CDHW days showed significant positive 505 

and negative correlation with the interannual variability of few natural modes of climate 506 

variability in some of these climate regions. In contrast, anthropogenic warming showed 507 

significant positive correlation over all the climate regions during the observational period 508 

(1982–2016). Keeping in mind the various shortcomings of the correlation coefficients, such as 509 

the susceptibility to outliers and errors arising from linearization, we selected the potential large-510 

scale climate indices based on the literature review to avoid any statistical artifact in the results. 511 

Attribution study performed based on a logistic regression approach suggest a significantly 512 

positive, and multiplicative effect of anthropogenic global warming on the odds of CDHW 513 



occurrences in the most vulnerable climate regions. Finally, odd ratios were estimated for these 514 

climate regions that were found to be in the range of 1.7 to 3.5, and as high as 5 to 60 at 1.5°C, 515 

and 2°C warming levels, respectively, with respect to the current world. Moreover, these odd 516 

ratios suggest about 17-fold reduction in the odds over EAS, 5 to 8-fold reduction over WNA, 517 

NAU, CAN, CEU, SAS, and MED, and 3 to 4-fold reduction over NEB, ENA, WAS at the 518 

1.5°C global warming level, compared to the 2°C global warming level. Our findings show that 519 

among all the climate regions, EAS is the most affected region due to the rise in anthropogenic 520 

warming. 521 

Overall, this study offers a quantitative assessment and understanding of the combined 522 

effects of natural climate variability and anthropogenic warming on the CDHW events during the 523 

past few decades. Nevertheless, future period may see more amplified large-scale 524 

teleconnections that may balance or reinforce the impact from increasing anthropogenic 525 

warming. Therefore, further scope of improvements in such projections can be accomplished by 526 

incorporating the possible effect of warming on large-scale climate perturbations. Even 527 

anticyclonic weather regimes, which are accompanied by slow-moving jet or stationary blocking 528 

zones (caused by the relatively high-pressure ridges), may also get affected by increase in 529 

warming levels (Dong et al., 2018), therefore, should also be considered as additional co-factors. 530 

Besides that, a detailed analysis including the multiple components of human influences, such as 531 

the land-use practices (Findell et al., 2017), increased effect of dust aerosol (Huang et al., 2015), 532 

and surface-energy partitioning (Mukherjee and Mishra, 2020) can also be beneficial for 533 

accurately assessing the future changes in CDHW event characteristics. Lastly, simple regression 534 

techniques can only identify the relationships between variables and the CDHW events. These 535 

techniques are restricted by model assumptions and have limitations in terms of defining the 536 



causal linkages that often are more meaningful for prediction purposes, therefore, necessitating 537 

development of more nuanced statistical techniques that robustly captures the causal associations 538 

between the drivers and CDHW events.  539 
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